Chapter

2
 More about Percentages

思考站

某基金投資公司的李主任正在向陳先生推銷基金。

李主任：「我們現正代理兩種新推出的保證基金，回報率如下：
（1）生物科技基金 \qquad每年保證有 4% 的複式增長；
（2）環球債券基金——保證3年後有 15%的增長。」

陳先生：「我打算投資三年，該買哪一種基金呢？」

應試錦囊

1．利息的利率一般以年利率（interest rate per annum）計算，所以時期需以年為單位。

2．計算複利息（compound interest）時，若利息不是每年結算一次，則需注意在公式 $A=P \times(1+r \%)^{n}$ 中，$r \%$ 及 n 的變化。例：若年利率 $=6 \%$ ，年期 $=3$ 年，複利息每半年結算一次，則
$r \%=6 \% \times \frac{6}{12}=3 \%$（因每次只可得到全年利息的一半）
$n=2 \times 3=6$（因每年計算利息 2 次，共有 3 年）

3．當情況複雜時，如有兩件或以上的事件時，我們可利用樹形圖（tree diagram）或列表法來協助找出所有可能結果（possible outcome）。

4．幾何概率（geometric probability）是關於幾何圖形的面積或長度等量度的概率。

Warm Up Practice

Important Formulas：

For an event E ，
1．$P(E)=\frac{\text { Number of favourable outcomes }}{\text { Total number of possible outcomes }}$
2． Experimental probability $=\frac{\text { Number of trials in which event } E \text { occurs }}{\text { Total number of trials }}$
3．Geometric probability $=\frac{\text { Areas }(/ \text { length }) \text { of the region in which event } E \text { occurs }}{\text { Areas }(/ \text { length }) \text { of the whole figure }}$

1．State whether each of the following statement is true (T) or false (F) ．
（a）If a card is drawn from a pack of poker at random， then the probability of getting a red card is the same as getting a black card．
（a） \qquad
（b）If a bag contains red balls only，then the event of getting a blue ball is an impossible event．
（b） \qquad
（c）$\frac{2}{\pi}$ can be the probability of an event．
（c）
（d）The experimental probability must be different from theoretical probability．
（d） \qquad
（e）When throwing a dice twice，the total number of possible outcomes is 36 ．
（e） \qquad
（f）If a bag contains $\$ 5$ coins only，then the event that a $\$ 2$ coin is taken out from this bag is an impossible event．
（f）

Test Your Understanding

Fundamental Stage

A. Multiple-choice Question

1. The following graph represents the inequality

A. $x>2$.
B. $x \geq 2$.
C. $x<2$.
D. $x \leq 2$.

2. The following graph represents the inequality

A. $x>-3$.
B. $x \geq-3$.
C. $x<-3$.
D. $x \leq-3$.

DSE3. If $a>b>0$, which of the following may not be true?
A. $-2 a<-2 b$

DSE 6. Suppose $0<a<b<1$. Which of the following is false?
A. $a b>1$
B. $2 a<2 b$
C. $\frac{1}{a}>\frac{1}{b}$
B. $\frac{a}{3}>\frac{b}{3}$
C. $(1-a)(1-b)<0$
D. $1-a<1-b$ \square
4. How many positive integers satisfy the inequality $x \leq \frac{5 \pi}{2}$?
A. 6
B. 7
C. 8
D. 9
5. Which of the following numbers does not satisfy the inequality $x>\sqrt{7}$?
A. 2.65
B. $\frac{8}{3}$
C. $\frac{3 \pi}{2}$
D. $\frac{9}{4}$

Advanced Stage

A. Multiple-choice Question

1. How many positive integers satisfy $\frac{x}{2}+\frac{x+1}{3}<\frac{x+2}{4} ?$
A. 0
B. 1
C. 2
D. 3
2. a and b are solutions of the following figure, where $a<b$.

Which of the following must be true?
I. $a+b>0$
II. $a b<0$
III. $(a+6)(b-a)>0$
A. I only
B. III only
C. I and II only
D. I and III only

DSE 3. If $a>b$ and a, b are both negative, which of the following is / are true?
I. $2 a<2 b$
II. $-3 a<-3 b$
III. $-3 a>3 b$
A. II only
B. III only
C. I and III only
D. II and III only

Public Exam Classroom

Step－hy－siep Demo

In the figure，$\triangle P Q R$ is an isosceles triangle with $P Q=P R . S$ is a point on $Q R$ such that the orthocentre of $\triangle P Q R$ lies on $P S$ ．
（a）Show that $\triangle P Q S \cong \triangle P R S$ ．
（b）Are the orthocentre，circumcentre and incentre of $\triangle P Q R$ collinear？Explain your answer．

考題趨勢
－DSE 卷二常見「三角形的中心」題型（常涉及其他課題的知識）
－DSE 沒有「三角形不等式」題型

Solution：

（a）$\because \quad P S$ is an altitude．《垂心為頂垂線的交點。
$\therefore \quad P S \perp Q R$
$\therefore \quad \angle P S Q=\angle P S R=90^{\circ}$
$P Q=P R$
（given）
$P S=P S \quad$（common side）
$\therefore \quad \triangle P Q S \cong \triangle P R S \quad(R H S)$
（b）$Q S=R S \quad$（corr．sides,$\cong \Delta s$ ）
Since $P S$ is the perpendicular bisector of $Q R$ ，the circumcentre lies on $P S$ ．
$\angle Q P S=\angle R P S \quad($ corr．$\angle s, \cong \Delta s)$
Since $P S$ is the angle bisector of $\angle Q P R$ ，the incentre lies on $P S$ ．
$\therefore \quad$ The orthocentre，circumcentre and incentre of $\triangle P Q R$ are collinear．

Exam－type Question

${ }_{\mathrm{NF}}^{1 .}$ In the figure，$A B=A C . P$ is a point on $B C$ such that the incentre of $\triangle A B C$ lies on $A P$ ．
（a）Show that $\triangle A B P \cong \triangle A C P$ ．
（b）Are the orthocentre，circumcentre and incentre of $\triangle A B C$ collinear？Explain your answer．

（6 marks）

2．In the figure，$C D$ is a median of $\triangle A B C$ and $A D=C D$ ．
（a）Find $p+q$ ．
（b）Is $\triangle A B C$ a right－angled triangle？Explain your answer．

（6 marks）

Score sheet (Assessment 3)

Target I: To understand algebraic expression
Target II: To apply percentages including growth and depreciation
Target III: To explore and study 3-D figures and their measurements
(Chapter 1, 3)
(Chapters 2)
Target IV: To study the probability and central tendency
(Chapters 4, 9)
Target V: To recognize the deductive approach in handling geometric proofs
(Chapter 5, 6)
Target VI: To apply trigonometric ratios, bearing and gradient
(Chapters 7, 8)
(Chapters 10)
Target VII: To study the coordinate geometry of straight lines
(Chapter 11)

Target Question		I	II	III	IV	V	VI	VII	Total
$\begin{gathered} \hline \text { Section A } \\ (30 \%) \end{gathered}$	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
	11								
	12								
	13								
	14								
	15								
$\begin{gathered} \hline \text { Section B } \\ (37 \%) \end{gathered}$	16								
	17								
	18								
	19								
	20								
	21								
	22								
$\begin{gathered} \hline \text { Section C } \\ (33 \%) \end{gathered}$	23								
	24								
	25								
	Scores								
	\because	0-5	0-4	0-7	0-6	0-9	0-6	0-9	0-46
	\because	6-9	5-7	8-12	7-11	10-16	7-10	10-16	47-81
	-	10-11	8-9	13-15	12-14	17-19	11-13	17-19	82-100

Key:
Not Yet able to
\because Beginning to develop the ability to
Generally able to

Assessment 3 (Revision for Chapters 1-11)

Time allowed: 1 hour and 30 minutes
Full marks: 100
Answer ALL questions
Section A: Multiple-choice Question (30 marks)
Each question carries 2 marks.

1. Which of the following is false?
A. $a^{2}-25 a=a(a-5)$
B. $a^{2}-49=(a+7)(a-7)$
C. $a^{2}-2 a-35=(a+5)(a-7)$
D. $a^{3}+10 a^{2}+25 a=a(a+5)^{2}$
2. Which of the following has/have $x-3$ as a factor?
I. $x^{3}-27$
II. $x^{2}+4 x-21$
III. $x^{4}-81$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

3. Suppose $S=v t$. If v is increased by 10% and t is decreased by 8%, find the percentage change in S.
A. -2.8%
B. $+1.2 \%$
C. $+2 \%$
D. $+2.5 \%$

4. Tom is 10% heavier than Peter and Jack is 8% lighter than Peter. By how much percent is Tom heavier than Jack?
A. 16.4% (cor. to 1 d.p.)
B. 17.2% (cor. to 1 d.p.)
C. 18%
D. 19.6% (cor. to 1 d.p.)
