Basic Questions

1. Complete the table below.

	In Arabic numerals									In words
	100M	10M	M	100Th	10Th	Th	H	T	U	
(a)		-	8	5	-	-	-	1	9	Twenty-eight million five hundred and thirty thousand seven hundred and nineteen
(b)	6	4	7	0	2	1	0	8	5	

2. In 20576 498, ‘ 7 ’ is in the \qquad place and it stands for \qquad ;
\qquad ' is in the millions place and it stands for \qquad .
3. Complete the table below.

	Exact value	Round off to the nearest hundred thousand			
(a)	5736769				
Round off to the nearest					
million			$	$	(b)
:---					
(c) 29927595					
458818676					

4.

Which of the following numbers may be the latest population?A. 7612009
B. 7612757
C. 7628409
D. 7639867
5. In the number 405369387 , what is the total value of the two ' 3 's?A. 30300
B. 299700
C. 300300
D. 303000

Questions
6. When we write 'ninety million four hundred and twenty-five thousand and three' in Arabic numerals, there are \qquad ' 0 's.
7. The following table shows the number of sales of four types of books in a bookshop last year.

Book	Storybook	Fiction	Travel book	Textbook
Number of sales	530816	679281	602673	1037459

Arrange the number of sales from the largest to the smallest.
Answer: \qquad , \qquad , \qquad , (Largest)
\square
\qquad
\qquad
\qquad
8. (a) Rounding off 679743071 to the nearest \qquad or \qquad is 680000000 .
(b) Rounding off 243045982 to the nearest \qquad or \qquad is 243000000 .
9. The number card below is covered with dirt. If rounding off this number to the nearest million is 73000000 , which of the following may be the digit covered with the dirt?

72/416038

A. 0C. 4
\bigcirc
B. 3
D. 8

Use the number cards above to form the specified numbers.
(a) The largest 7-digit odd number: \qquad
(b) The smallest 7-digit even number: \qquad
(c) The 7-digit number closest to 5000000 : \qquad
\qquad

Learning Objectives
(1) Multi-digit numbers
(2) Areas of triangles and quadrilaterals
(3) Area of polygons

1. Mick rounds off 534671803 to get the result 534700000 . He rounds off the number to the nearest
A. ten million.
B. million.
C. hundred thousand.
D. ten thousand.
2. Round off the turnover of a toy shop to the nearest million. The result is $\$ 25000000$. Which of the following may be the actual turnover of the toy shop?

20

A. $\$ 20499584$
B. $\$ 25367498$
C. $\$ 25907343$
D. $\$ 20599584$
3. The following picture shows a stage with decoration of stars.

(a) Draw straight lines on the picture to divide it into \qquad equal parts.
(b) There are about \qquad stars in the above picture.
(c) The weight of each star is 88931 g . About how many kilograms do the stars on the stage weigh?
\bigcirc
A. 54 kgB. 540 kg
C. 5400 kg
\bigcirc
D. 54000 kg
12. (a) Find the area of the figure on the right. If you use the dissecting method, draw dotted line(s) on the figure to show how you dissect the figure. If you use the filling method, colour the part(s) to
 show how you fill the figure.
(b) The area is \qquad cm^{2}.
13. What is the area of the polygon on the right?

A. $486 \mathrm{~cm}^{2}$
B. $462 \mathrm{~cm}^{2}$
C. $324 \mathrm{~cm}^{2}$
D. $162 \mathrm{~cm}^{2}$

14. What is the area of the figure? (Show your working)
\square

\qquad

Common Mistakes

Challenge

1. Sam has $6 \frac{1}{4}$ bottles of sweets. May has $2 \frac{1}{6}$ less bottles of sweets than Sam. Don has $5 \frac{3}{8}$ bottles of sweets. How many more bottles of sweets than May does Don have? (Show your working)

What's wrong?

Some pupils forget to add brackets in the expression.

Add brackets as needed.

Challenge
 2

2.

Electricity consumption of Miss Cheung's family last year

The electricity consumption in February is \square of that in August. (Give the answer as a fraction)

Similar question: P. 37 Q3(c)

Multi－digit numbers

multi－digit numbers	多位數
hundred thousands place	十萬位
millions place	百萬位
ten millions place	千萬位
hundred millions place	億位
approximate value	近似值
round off	四捨五入
estimate	估計

Areas of triangles and quadrilaterals

height	高
base	底
upper base	上底
lower base	下底
parallelogram	平行四邊形
triangle	三角形
trapezium	梯形

Comparing fractions，addition and subtraction of fractions

fractions with different 異分母分數
denominators
fractions in the lowest
terms 最簡分數
addition 加法
sum 和
Pplus $\mathrm{Q} \quad \mathrm{P}$ 加上 Q
subtraction 減法
difference 差
P minus Q P 減去 Q
mixed operations of addition and subtraction

加減混合運算

Multiplication of fractions

multiplication 乘法
product
積
P times Q
P 乘以 Q

Area of polygons

polygon
多邊形
\qquad
\qquad

Learning Objectives

(1) Use algebraic expressions to represent the operations involving unknown quantities
(2) Solve simple equations and solve problems by using equations

Self-Assessment
Correct Incorrect

1. Circle all the algebraic expressions.

$$
7+6 \quad 11 \div A \quad 9 f \quad 12<21 \quad 4 h-36 \quad 5+8=13
$$

2. According to the values represented by the algebraic symbol, find the values of the algebraic expressions.

	x	16	20	24
(a)	$x+5$			
(b)	$\frac{x}{4}$			

3. Which of the following equations represents ' w times 5 and then minus 3 equals 17'?
\bigcirc
A. $5(w-3)=17$B. $\frac{5 w}{3}=17$C. $w+5-3=17$D. $5 w-3=17$
4. Write an algebraic expression to represent each of the following.
(a) The sum of 11 and 3 times of c is \qquad .
(b) 5 more than half of x is \qquad .
5. Which of the following expressions represents ' 7 minus r, and then multiplied by 7 '?
A. $7-r \times 7$B. $(7-r) \times 7$
\bigcirc
C. $7 \times(r-7)$D. $(7-7) \times r$
6. If $3 T=18$, then $6 T=$ \qquad .
